

### EO-4426

### Drug Class: "Dual" DNA Pol α & RNR Inhibitor

# A First-in-Class Orally Bioavailable, Brain Penetrant - Dual Inhibitor of DNA Polymerase Alpha (Pol α ) and Ribonucleotide Reductase (RNR) for the Treatment of Cancer

#### **Overview:**

**EO-4426 (tezacitabine)** is an orally bioavailable, brain penetrating, small molecule anticancer drug that targets both DNA polymerase alpha (**Pol α**) and ribonucleotide reductase (**RNR**), two essential and complementary enzymes involved in DNA replication and repair. This dual-targeting mechanism represents a novel therapeutic strategy to exploit the vulnerabilities of cancer cells, particularly their dependence on rapid and efficient DNA replication.

#### Mechanism of Action:

- **Pol α Inhibition**: **Pol α** is a critical component of the primase complex and is responsible for initiating DNA synthesis during replication. Inhibition of **Pol α** disrupts replication initiation, halting the progression of DNA replication forks.
- **RNR Inhibition: RNR** is essential for the de novo synthesis of deoxyribonucleotide triphosphates (dNTPs), the building blocks of DNA. Inhibiting **RNR** depletes intracellular dNTP pools, further impairing DNA synthesis and repair.

The simultaneous inhibition of **Pol**  $\alpha$  and **RNR** induces severe replication stress, leading to replication fork collapse, DNA damage accumulation, and ultimately, cancer cell death.

#### Scientific and Clinical Rationale:

- **Unmet Need and Novelty**: While several **RNR** inhibitors (e.g., hydroxyurea, gemcitabine, clofarabine) are FDA-approved for cancer treatment, there are currently no approved or clinical-stage oral and brain penetrant therapies specifically targeting DNA polymerase alpha.
- Targeting a Central Node in Replication: Pol  $\alpha$  plays a foundational role in initiating DNA replication, making it a compelling target in rapidly dividing cancer cells. Compared to other polymerases like Pol  $\theta$ , which is more involved in DNA repair and synthetic lethality approaches, Pol  $\alpha$  offers broader and potentially more impactful therapeutic reach.
- **CNS Penetration: EO-4426** crosses the blood brain barrier and has demonstrated anticancer activity in preclinical brain tumor models providing an opportunity for the treatment of brain metastases and primary brain tumors
- **Broad Antitumor Potential: EO-4426** has demonstrated clinical activity across a wide range of tumor types, including lung, breast, colon, prostate, brain tumors, and leukemia, suggesting its utility across diverse cancer indications.

• **Gemcitabine Resistance: EO-4426** dual mechanism of action supports the potential for activity gemcitabine-resistant cancers where *Cytidine Deaminase (CDA)* overexpression is a mechanism of resistance. *CDA Biomarker Testing* can be used to identify gemcitabine resistant patients, a major clinical challenge especially in the treatment of Pancreatic, NSCLC, Breast, and Bladder cancer.

### Clinical Development History:

**EO-4426** has been studied in over 400 patients across multiple Phase 1 and Phase 2 clinical trials, both as a single agent and in combination with chemotherapeutics such as 5-FU and cisplatin. It has been evaluated in both intravenous and oral formulations.

- **Safety Profile**: In four Phase 1 studies, intravenous **EO-4426** was well tolerated. The doselimiting toxicity was neutropenia, which was transient and reversible.
- **Efficacy Signals**: Clinical activity was observed in multiple cancer types, supporting its continued development and potential for broad applicability.

### Pre-clinical activity

**EO-4426** demonstrated promising activity against several cancers including brain tumors in preclinical models

| Preclinical Tumor Models |                          | <u>Outcome</u>                                                    |
|--------------------------|--------------------------|-------------------------------------------------------------------|
|                          | D45 Brain Tumor          | Median Survival:<br>EO4426: 46.5d<br>control: 20d                 |
|                          | SK-N-C brain tumor       | 90d Survival:<br>EO4426: 90%<br>carmustine: 26%<br>untreated: 23% |
|                          | MDA-MB-231 breast cancer | 90-100% cure (CR)                                                 |
|                          | L1210 leukemia           | 80% cure (CR)                                                     |
|                          | Lewis lung carcinoma     | 80% cure (CR)                                                     |

## Future Clinical Development:

**EO-4426** is especially well-suited for treating cancers that exhibit CDA overexpression and have recurred following treatment with RNR inhibitors such as gemcitabine or hydroxyurea

Given its unique mechanism and favorable clinical profile, **EO-4426** represents a promising first-inclass oral therapeutic candidate capable of addressing high unmet needs in oncology.